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Abstract. We obtain a recursive algorithm to compute the partition function of cubic Ising
maps with fixed size and genus. The algorithm runs in polynomial time, which is much faster
than Tutte-like/topological recursion methods.

We construct this algorithm out of a partial differential equation that we derive from the
first equation of the KP hierarchy for the generating function of bipartite maps, which is
related to the Ising partition function by a change of variables. We also obtain inequalities on
the coefficients of this partition function, that will be useful for a probabilistic study of cubic
Ising maps whose genus grows linearly with their size.

1. Introduction
Combinatorial maps are a model of discrete surfaces formed by gluing polygons along their

sides, or alternatively, of graphs embedded on surfaces. Their study goes back to the 60s,
where Tutte performed the enumeration of planar maps (i.e. maps of the sphere) in a series
of papers [24, 23, 25]. Later on, these results were extended to maps on a surface of fixed
genus, both as exact algorithms to compute the numbers of maps recursively in the genus,
and as asymptotics as the size of the maps (i.e. the number of edges) grows large [26]. These
algorithms were later shown to fit in a larger framework of enumerative geometry, namely
the topological recursion (see [12] and references therein). However the TR algorithms have
a superexponential runtime in the genus, and they cannot be used in practice to compute
numbers except when the genus is very small.

Fortunately, there are faster ways of computing these numbers: the generating series of
maps satisfies the KP hierarchy, an integrable family of nonlinear partial differential equa-
tion (hereafter PDEs) – see [19] and references therein. These PDEs arose in the context of
mathematical physics (as an extension of the more classical KdV hierarchy, which models
waves in shallow water, but was already shown to appear in enumerative geometry [27, 16]).
Goulden and Jackson proved this fact [13], and derived a fast (polynomial time) algorithm
in the form of a simple recursion for the numbers of triangulations (maps whose faces are
triangles) in any genus (it turned out that this recursion had already been observed in the
physics litterature [10, 5, 1]). This happened in parallel with several works on Hurwitz
numbers ([21, 11]), and later on, several other fast recursions for combinatorial maps were
derived [7, 18].
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In the language of physics, “usual” maps correspond to a model of two dimensional quan-
tum gravity “without matter”, but one can also consider maps endowed with a model of
statistical mechanics (see [9] for a detailed review). In this paper, we consider the partic-
ular case of the Ising model, which consists of putting colors (or spins) on the faces of our
maps, and introducing a weight on monochromatic edges. The Ising model was first intro-
duced on fixed lattices [17, 14], and has been an active field of study ever since. The Ising
model on random maps as a model of “2D quantum gravity with matter” was introduced
more recently [3]. As for usual maps, the Ising model has been solved exactly in the planar
case [15, 4], and it was shown to satisfy the topological recursion, see e.g. [12]. (Note that all
these results rely on a correspondence between Ising maps and bipartite maps, that we also
exploit in the present paper.) However, once again the algorithmic runtime grows exponen-
tially with the genus. Our main result is to give a fast algorithm for the associated counting
problem.

Theorem 1.1. Let In,g be the partition function of labelled triangulations with 2n faces colored
either black or white faces, with a weight ν◦ (resp. ν•) per white-white (resp. black-black) edge.
The series I =

∑
n,g≥0 t

3nsgIn,g satisfies and explicit PDE in the variables t, ν◦ and ν•, see (19)
for details. This equation yields an algorithm to compute the polynomials In,g in polynomial time
(and space) with respect to n and g.

Note that since we have two different Ising weights ν◦ and ν•, this is equivalent to study-
ing the Ising model coupled with an external magnetic field. The Ising model without mag-
netic field corresponds to setting ν◦ = ν•.

A corollary of our main theorem is the following enumerative bound.

Theorem 1.2. Let Tn,g(ν•,ν◦) be the the partition function of rooted triangulations with 2n faces
colored either black or white faces, with a weight ν◦ (resp. ν•) per white-white (resp. black-black)
edge. For ν•,ν◦ > 0 the following inequality holds:

nTn,g(ν•,ν◦) ≥ C(ν•,ν◦)

n3Tn−2,g−1(ν•,ν◦) +
∑

n1+n2=n−2
g1+g2=g

n1Tn1,g1
(ν•,ν◦)n2Tn1,g2

(ν•,ν◦)

 (1)

where

C(ν•,ν◦) = 10
min(ν2

◦ ,ν•)
4

ν2
◦ + ν• + ν◦

ν•
+ 1
ν◦

.

Similar bounds for usual triangulations can be derived from the Goulden–Jackson recur-
rence formula [13], and they are a crucial ingredient in a work of Budzinski and the third
author [6] that establishes the local convergence of random high genus triangulations. The
bounds we provide will play the same role for the study of high genus Ising triangulations.

Our method consists in using the Goulden–Jackson result, coupled with the fact that the
Ising generating series is the same as the bipartite map generating series up to a change of
variables. We then express the first KP equation in the relevant variables, and although it
does not give a closed recurrence formula like it did for usual triangulations, the PDE that
we obtain can still be used to calculate the polynomials In,g recursively.

The structure of the paper is as follows. In Section 2, we recall the first equation of the
KP hierarchy satisfied by the generating function of labelled biparite maps, and show how
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they specialise to biparite maps having only vertices of degree 2 and 3. In Section 3, we state
a relation between these maps and cubic maps endowed with the Ising model, that induces
a new PDE for the generating function of the latter, as announced in Theorem 1.1. In Sec-
tion 4, we show that this PDE, along with minimal assumptions, characterises the generating
function of Ising cubic maps, and yields the desired polynomial-time algorithm to compute
its coefficients. In Section 5, we consider the specialisation of this PDE in three cases: planar
and unicellular Ising maps, as well as uncoloured cubic maps (which recovers the Goulden–
Jackson recursion on triangulations). Finally, in Section 6 we prove Theorem 1.2.

2. Bipartite maps with vertex degrees 2 and 3
2.1. Definitions

We first consider in this section edge-labelled bipartite maps of arbitrary genus, in which
all vertices have degree 1, 2 or 3. We call such maps, for short, maps of bounded degree. We
will count families of such maps by edges (variable z), faces (variable u), white vertices of
degree i ∈ {1,2,3} (variable pi), and black vertices of degree i (variable qi). We sometimes
call these variables the weights of the corresponding items (edges, faces, etc.). Our gener-
ating functions are exponential in the number of edges. In particular, we denote by H the
generating function of bipartite maps (also called hypermaps, hence the notation) of bounded
degree . That is,

H =
∑
m

ze(m)

e(m)!
uf(m)

3∏
i=1

p
v◦i (m)
i q

v•i (m)
i , (2)

where the functions e, f, v◦i and v•i count respectively edges, faces, white vertices of degree i
and black vertices of degree i. The sum runs over all labelled bipartite maps m satisfying the
above small degree condition. We call leaves the vertices of degree 1. Note that the variable z
is redundant, since

e(m) =
∑
i

iv◦i (m) =
∑
i

iv•i (m).

Also, the genus g(m) of the map m is given by Euler’s relation:∑
i

(
v◦i (m) + v•i (m)

)
+ f(m)− e(m) = 2− 2g(m).

This series starts as follows:

H = p1q1zu +
(
p2

1q2u + p2 q
2
1u + p2q2u

2
) z2

2

+
(
p3

1q3u + p3 q
3
1u + 3p1p2q1q2u + 3p1p2q3u

2 + 3p3q1q2u
2 + p3q3u

3 + p3q3u
) z3

3
+O

(
z4

)
.

See Figure 1 for an illustration of the coefficient of z3/3!. These labelled maps, say with n
edges, can be encoded by three permutations of the symmetric group Sn, denoted σ◦, σ•
and φ, that describe the cyclic order of edge labels around white vertices, black vertices,
and faces, respectively. The product σ◦σ•φ is the identity, and the group generated by these
three permutations acts transitively on {1, . . . ,n}.
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2u3p3q3

6up1q1p2q2 2up3q3

2u(q3p
3
1 + p3q

3
1)

6u2(p1p2q3 + q1p3q2)

Figure 1. Bipartite maps with 3 edges and vertex degrees at most 3. The
weights keep track of the number of labellings of the edges and of the ex-
change of colours.

2.2. The first KP equation

In 2008, Goulden and Jackson proved that the series H satisfies the partial differential
equations of the KP hierarchy [13, Thm. 3.1]. This is actually true as well without the bound
of the degrees. Here we shall use the first of these partial differential equations (PDE) only.
It involves derivatives with respect to the three variables pi .

Theorem 2.1. The above seriesH satisfies the following fourth order partial differential equation:

H1,3 =H2,2 +
1

12
H1,1,1,1 +

1
2

(H1,1)2, (3)

where an index i indicates a partial derivative in the variable pi .

Our objective in this section is to derive a PDE for the specialization of H at p1 = q1 = 0.
That is, we want an equation for bipartite maps having vertices of degree 2 and 3 only. For
such a map m, we have

e(m) = 2v◦2(m) + 3v◦3(m) = 2v•2(m) + 3v•3(m), (4)

hence the variables p3 and q3 are redundant if we keep z, p2 and q2. Later we will set them
to 1, but for the moment we keep them. Let Θ be the operator that sets the variables p1 and
q1 to 0, and let B := ΘH . That is,

B =
∑
m

ze(m)

e(m)!
uf(m)

3∏
i=2

p
v◦i (m)
i q

v•i (m)
i , (5)

where the sum runs over edge labelled bipartite maps with degrees 2 and 3. The set of such
maps will be denoted by B.

The following proposition, based on combinatorial constructions, will allow us to special-
ize (3) at p1 = q1 = 0 (see Corollary 2.3).

Proposition 2.2. Let us introduce the following linear differential operator:

L =
2

1− z2p2q2

(
z2q2p3

∂
∂p2

+ zq3
∂
∂q2

)
. (6)
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Then the partial derivatives occurring in Theorem 2.1, once specialized at p1 = q1 = 0, are given
by

ΘH1,1 = L2B+
uz2q2

1− z2p2q2
, (7)

ΘH1,1,1,1 = L4B+
12z6u

(
p2

3q
5
2z

4 + 2p3q
2
2q3z+ p2q

2
3

)
(1− z2p2q2)5 , (8)

ΘH1,3 =
1

3p3

(
z
∂
∂z
− 2p2

∂
∂p2
− 1

)
LB, (9)

and finally

ΘH2,2 =
∂2B

∂p2
2

. (10)

Proof. The enumeration of labelled objects, and the correspondence between operations on
these objects and operations on their generating functions, is conveniently described using
the notion of species. We refer to the book by Bergeron, Labelle and Leroux [2], or to the
short, self-contained account of [22, Sec. 1]. The two ingredients that we need here are the
product of two species, in which the labels are distributed over the two objects, and the
marking of an unlabelled element, here a vertex.

. . .

. . .
. . .

. . .

. . .1
2

1

2

Figure 2. Bipartite maps with two ordered white leaves and at least one ver-
tex of degree 3.

Let us begin with ΘH1,1. This series counts maps of bounded degree having exactly two
(ordered, unweighted) leaves, both white. There are two types of such maps:

• Maps with no vertex of degree 3. They are reduced to a chain of alternatingly black
and white vertices, with a white leaf at both ends, oriented from the first to the sec-
ond leaf. In particular, the chain contains an even number, say 2n, of edges. A chain
of length 2n is then simply encoded by a permutation of S2n (giving the sequence of
edge labels from end to end), and the contribution of maps of this type is

u
∑
n≥1

z2n

(2n)!
(2n)!pn−1

2 qn2 =
uz2q2

1− z2p2q2
.

• Maps with at least one vertex of degree 3: in these maps, each of the two leaves lies at
the end of a chain of vertices of degree 2, attached at a vertex of degree 3 (Figure 2).
In this case, let us first delete the chain of the second leaf: we obtain a new map with
small degrees and one white leaf. We then repeat this operation with the first leaf
so as to end with a map of degrees 2 and 3. Conversely, given a set M of labelled

bipartite maps with small degrees, let
−−→
M be the set of maps obtained as follows:

take a map in M, choose a vertex v of degree 2 and one of the two corners at this
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vertex, and attach at this corner a chain ending with a white leaf; the vertex v has
now degree 3. If M denotes the generating function ofM (with variables z,u,pi ,qi as

in (2)), the generating function of
−−→
M is

−→
M := 2p1p3

z2q2

1− z2p2q2

∂M
∂p2

+ 2p1q3
z

1− z2p2q2

∂M
∂q2

= p1LM,

where L is defined by (6). The first (resp. second) half of the expression counts maps
such that the chain is attached to a white (resp. black) vertex. In this case, the chain
has to be of even (resp. odd) length.

Now the maps that we need to count are precisely those obtained by first adding
to a map of B a chain, ending at a first white leaf, and then a second chain to the
resulting map, ending at a second white leaf. The above argument gives the resulting
generating function as L2B. This concludes the proof of (7).

The series ΘH1,1,1,1 counts maps with small labels, having exactly four (ordered, un-
weighted) leaves, all of them being white. These maps are obtained by adding consecutively
two chains ending at white leaves to maps counted by ΘH1,1. By the above construction,
ΘH1,1,1,1 = L2ΘH1,1, and thanks to (7), this yields the announced result (8).

The series ΘH1,3 counts maps with small labels, having exactly one (unweighted) leaf
which is white, and in addition a marked white unweighted vertex of degree 3. These maps
are obtained from maps of B by first adding a chain ending at a white leaf — this gives the
series LB — and then marking a white vertex of degree 3. The resulting generating function
is

∂
∂p3

LB.

The maps m counted by LB satisfy

e(m) = 1 + 2v◦2(m) + 3v◦3(m).

Hence
∂
∂p3

LB =
1

3p3

(
z
∂
∂z
− 2p2

∂
∂p2
− 1

)
LB,

which gives (9).
The final identity is obvious, since the specialization operator Θ commutes with the dif-

ferentiation with respect to p2. □

We can now convert the KP equation (3) into an equation for bipartite maps with vertices
of degree 2 and 3.

Corollary 2.3. The generating function B of bipartite maps having only vertices of degree 2 and 3
satisfies the following fourth order partial differential equation:

1
3p3

(
z
∂
∂z
− 2p2

∂
∂p2
− 1

)
LB =

∂2B

∂p2
2

+
1

12
L4B+

1
2

(
L2B

)2
+

uz2q2

1− z2p2q2
L2B+R, (11)

where L is defined by (6) and

R :=
1
2

(
uz2q2

1− z2p2q2

)2

+
z6u

(
p2

3q
5
2z

4 + 2p3q
2
2q3z+ p2q

2
3

)
(1− z2p2q2)5 .

This is again a PDE in three variables, namely z, p2 and q2.
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Remark 2.4. The above PDE does not characterize the series B. Experimentally, if we pre-
scribe the following form for B:

B =
∑
i,j,n

Bi,j,np
i
2q
j
2z
n,

where the Bi,j,n are polynomials in u such that Bi,j,n = Bj,i,n, and the summation is restricted
to tuples (i, j,n) ∈N3 subject to the natural conditions

n ≥ 2, 0 ≤ i ≤ n/2, 0 ≤ j ≤ n/2, i ≡ −n mod 2, and j ≡ −n mod 2,

then the solution of the PDE appears to be unique if we prescribe in addition the values
Bn,0,0 of the polynomials that count (by faces) bipartite cubic maps with 3n edges. See our
Maple session for details. This should be provable along the same lines as Proposition 4.1
below.

Remark 2.5. The above PDE is not symmetric in p2 and q2, while the series B is symmetric.
One way to obtain an antisymmetric PDE for B, which in addition does not involve derivatives
in z anymore, is the following. The terms of the PDE that contain z-derivatives are Bz,p2

:=
∂2B/∂z∂p2 and Bz,q2

:= ∂2B/∂z∂q2, and the PDE depends linearly on them. The symmetric
PDE contains these two terms as well. So we write both PDEs, solve them for these two
derivatives, and finally write ∂q2

Bz,p2
= ∂p2

Bz,q2
. This gives a PDE in p2 and q2 only, but of

order 5 instead of 4. Of course, an alternative is to take any (symmetric) combinattion of the
original PDE and its symmetric.

3. Ising cubic maps
In this section we consider the class of cubic maps (all vertices have degree 3), labelled

on half-edges. We equip them with an Ising model, meaning that their vertices are colored
black and white as in Section 2, but now adjacent vertices may get the same color. In this
case we say that the edges that join them are monochromatic (or, for short, white, or black).
Observe that for any cubic map m, we have 2e(m) = 3v(m), so that the number of edges
(resp. vertices) is a multiple of 3 (resp. 2).

We will count these coloured cubic maps — called Ising maps henceforth — by the number
of edges (variable t), the genus (variable s), the number e◦ (resp. e•) of monochromatic white
(resp. black) edges (variables ν◦ and ν•, respectively). Note that a power t3n corresponds to
a map with 3n edges and 2n vertices. Let I be the exponential generating function of Ising
maps, labelled on half-edges:

I =
∑
m

te(m)

(2e(m))!
sg(m)ν

e◦(m)
◦ ν

e•(m)
• =

(1
3

(1 + s) + ν◦ν• + (ν3
• + ν3

◦ )(
2
3

+
s
6

)
)
t3 +O(t6). (12)

See Figure 3 for a justification of the coefficient of t3/6!. Observe that the number of bi-
coloured (or: frustrated) edges is e•◦(m) = e(m)−e•(m)−e◦(m), and that the numbers of black
and white vertices are given by

3v•(m) = e•◦(m) + 2e•(m), and 3v◦(m) = e•◦(m) + 2e◦(m),

so that these numbers are recorded (be it implicitely) in our series. This means that the
Ising model that we address includes a magnetic field. Also, the above identities imply that
e•(m)− e◦(m) is always 0 modulo 3.
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2 · 5!

5!ν3
◦

5!ν3
• 5!ν3

• s

5!ν3
◦ s

6!ν•ν◦

3 · 5!ν3
◦

3 · 5!ν3
•

2 · 5!s

Figure 3. Ising cubic maps with 3 edges and 2 vertices. The weights keep
track of the number of labellings of half-edges.

Starting from an Ising cubic map, one can insert on its edges bicoloured chains of vertices
of degree 2 so as to obtain a bipartite map with vertex degrees 2 and 3. This allows one to
relate the series I to the series B of Section 2. Variants of this “trick” have been used several
times in the study of the Ising model on maps [15, 4, 12]. We work out its details, in our
setting, in Section 3.1. Then we use this in Section 3.2 to convert the PDE satisfied by B into
a PDE satisfied by I .

3.1. From bipartite maps to Ising maps

Proposition 3.1. Define the change of variables Ψ on the ring Q[ν•,ν◦, s][[t]] by

t 7→ u1/3 z

1− z2p2q2
, ν• 7→ zp2,

s 7→ u−2, ν◦ 7→ zq2.
(13)

It gives a series of Q[p2,q2,u
1/3,1/u][[z]]. Then the generating function B of bipartite maps with

vertex degrees 2 and 3, defined by (5) and evaluated at p3 = q3 = 1, is

B =
u2

2
log

(
1

1− z2p2q2

)
+u2Ψ (I), (14)

where I is the Ising generating function defined by (12). Conversely,

I = sΦ(B)− 1
2

log
1

1− ν•ν◦
, (15)

where the inverse change of variables Φ is defined by

z 7→ s1/6t(1− ν•ν◦), p2 7→
ν•

s1/6t(1− ν•ν◦)
,

u 7→ s−1/2, q2 7→
ν◦

s1/6t(1− ν•ν◦)
.

(16)

The transformation Φ maps series in Q[p2,q2,u][[z]] in which the sum of the exponents of p2
and q2 never exceeds the exponent of z to series of Q[s1/6, s−1/6][[t,ν•,ν◦]].

Note that (4) implies that the series B ∈Q[p2,q2,u][[z]] satisfies the above condition.

Proof. Let us first observe that the series B defined by (5) is also the exponential generating
function of bipartite maps (with vertex degrees 2 and 3 as before) labelled on half-edges, with
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half-edges weighted by
√
z. That is,

B =
∑
m

ze(m)

e(m)!
uf(m)

3∏
i=2

p
v◦i (m)
i q

v•i (m)
i =

∑
m′

√
z

h(m′)

h(m′)!
uf(m′)

3∏
i=2

p
v◦i (m

′)
i q

v•i (m
′)

i ,

where the first sum runs over edge labelled maps m, and the second over half-edge labelled
maps m′. The notation h(m′) stands for the number of half-edges of m′. The reason for that
is that there exists a (2n)!/n!-to-1 correspondence between maps m′ with n edges labelled on
half-edges and maps m on n edges labelled on edges. This correspondence works as follows:
starting from m′, we erase all labels that are incident to white vertices, and relabel the other
half-edges with 1,2, . . . ,n, while preserving their relative order. This gives m. Conversely,
starting from m, we first choose in {1, . . . ,2n} the n labels of m′ that will be incident to black
vertices, spread them on the corresponding half-edges (while preserving the order of labels
of m) and then distribute the remaining n labels in any way on the half-edges that are inci-
dent to white vertices. We obtain in this way

(2n
n

)
n! = (2n)!/n! maps m′. This observation will

allow us to use the arguments of the theory of species [2] where now the atoms are half-edges
(rather than edges in the proof of Proposition 2.2).

Figure 4. The decomposition of a bipartite map of B into a cubic map and
chains. We refer to Figure 5 for details on the labels.

We now embark on the proof of (14). The maps m′ (labelled on half-edges) enumerated
by B are of two types:

• Either they only have vertices of degree 2, in which case they are cycles of even
length, say 2n, enumerated by

2u2
∑
n≥1

z2n

(4n)!
(p2q2)n(4n− 1)! =

u2

2
log

(
1

1− z2p2q2

)
.

This can be seen by cutting these cycles in the middle of the edge containing the
label 1, which gives an ordered chain with two dangling half-edges; the factor 2
accounts for the fact that the label 1 can be attached to a black or to a white vertex.
• Or they have vertices of degree 3, joined by chains of vertices of degree two (Figure 4,

left). To such a map m′, we associate an Ising cubic map m as follows: we erase all



10 M. BOUSQUET-MÉLOU, A. CARRANCE, AND B. LOUF

vertices of degree 2, and only retain the labels that are incident to cubic vertices
(Figure 5). If m (and m′) have 2n cubic vertices, we then relabel these half-edges with
labels 1,2, . . . ,6n, while preserving their order. Some oriented chains with dangling
half-edges come out, as illustrated in Figures 4 and 5.

i1 i3 i5 i7
i2 i4 i6 i8

i1
i8

i3 i5
i2 i4

i1
i6

i2 i4 i6

i3 i5 i7

i1 i3 i5
i2 i4 i6

i1 < i8

m′ m

Figure 5. Erasing vertices of degree 2 in a bipartite map m′ gives an Ising
cubic map m. Oriented bicoloured chains come out.

Let us determine the generating function of bipartite maps m′ that yield a given Ising
cubic map m having 2n vertices. These maps are obtained from m by choosing for each
edge e of m a bipartite oriented chain with dangling half-edges at both ends (Figure 5):

• For a monochromatic white edge e with labels i < j, we choose a chain of 2k + 1
vertices (and 4k + 2 half-edges), with black endpoints. These chains are counted by∑

k≥0

pk2q
k+1
2
√
z

4k+2
=

zq2

1− z2p2q2
.

The starting point of the chain will be attached on the side of e labelled i.
• Analogously, for a monochromatic black edge e, we choose an oriented chain of 2k+1

vertices, with white endpoints, with generating function zp2
1−z2p2q2

; it will be inserted
in e in a canonical fashion again.
• Finally, for a bicoloured edge e, we choose a (possibly empty) chain of 2k vertices,

starting with a black vertex, with generating function 1
1−z2p2q2

. This chain will be
inserted in e in the only way that preserves bipartiteness.

Hence, the set of bipartite maps m′ that give m after erasing vertices of degree 2 is a la-
belled product, in the species setting, of m and of a collection of oriented chains, and has
exponential generating function

√
z

6n

(6n)!
uf(m)

(
zq2

1− z2p2q2

)e◦(m) (
zp2

1− z2p2q2

)e•(m) 1
(1− z2p2q2)3n−e◦(m)−e•(m)

.

Recalling that m has 3n edges and 2n vertices, and that its genus g(m) satisfies 2g(m) =
2 +n− f(m), this can be rewritten as

u2

(2e(m))!

(
zu1/3

1− z2p2q2

)e(m)

u−2g(m)(zq2)e◦(m)(zp2)e•(m).
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Comparing with (12) shows that bipartite maps of B that have at least one vertex of degree 3
have generating function u2Ψ (I), where Ψ is the change of variables (13).

The rest of the proof is a mere calculation. □

3.2. A PDE for Ising cubic maps

In this subsection, we use the change of variables Φ to convert the PDE (11) satisfied by
the generating function B of bipartite maps into a PDE for the generating function of Ising
cubic maps I .

Let us return to the PDE (11), which involves series in z,p2,q2 and u. We want to apply
to this identity the change of variable Φ defined by (16), and to write the resulting identity
in terms of the series I (that is, in terms of ΦB) and its partial derivatives with respect to
t,ν•,ν◦ and s. Recall that we set p3 = q3 = 1.

Lemma 3.2. Applying the change of variable Φ to the differential operators involved in (11) yields:

Φ ◦ z ∂
∂z

=
(
t(1 + ν•ν◦)

1− ν•ν◦
∂
∂t

+ ν•
∂
∂ν•

+ ν◦
∂
∂ν◦

)
◦Φ ,

Φ ◦ ∂
∂p2

= s1/6t
(
tν◦

∂
∂t

+ (1− ν•ν◦)
∂
∂ν•

)
◦Φ ,

Φ ◦L = s1/3Λ ◦Φ ,

where L is defined by (6) and Λ is the following linear operator:

Λ = 2t2
(
t(ν2
◦ + ν•)

∂
∂t

+ ν◦(1− ν•ν◦)
∂
∂ν•

+ (1− ν•ν◦)
∂
∂ν◦

)
. (17)

Proof. Let A ≡ A(z,p2,q2,u) be a series in Q[p2,q2,u][[z]] such that in all monomials of A, the
sum of the exponents of p2 and q2 never exceeds the exponent of z. Let J ≡ J(t,ν•,ν◦, s) = ΦA.
This means conversely that

A(z,p2,q2,u) = Ψ J(t,ν•,ν◦, s) = J (ψ(z,p2,q2,u)) , (18)

where ψ = (ψ1, . . . ,ψ4) is the following vectorial function:

ψ : (z,p2,q2,u) 7→
(
u1/3 z

1− z2p2q2
, zp2, zq2,u

−2
)
.

We differentiate (18) with respect to z using the chain rule, and then apply Φ :

Φ
∂
∂z
A(z,p2,q2,u) = Φ

(
∂ψ1

∂z

)
× ∂J
∂t

(t,ν•,ν◦, s) + · · ·+Φ

(
∂ψ4

∂z

)
× ∂J
∂s

(t,ν•,ν◦, s).

So what we need is the image by Φ of the Jacobian matrix of ψ. We compute it to be:

Φ



∂ψ1
∂z

∂ψ1
∂p2

∂ψ1
∂q2

∂ψ1
∂u

∂ψ2
∂z

∂ψ2
∂p2

∂ψ2
∂q2

∂ψ2
∂u

∂ψ3
∂z

∂ψ3
∂p2

∂ψ3
∂q2

∂ψ3
∂u

∂ψ4
∂z

∂ψ4
∂p2

∂ψ4
∂q2

∂ψ4
∂u


=


1+ν•ν◦

s1/6(1−ν•ν◦)2 t2s1/6ν◦ t2s1/6ν• · · ·
ν•

ts1/6(1−ν•ν◦)
ts1/6(1− ν•ν◦) 0 · · ·

ν◦
ts1/6(1−ν•ν◦)

0 ts1/6(1− ν•ν◦) · · ·
· · · · · · · · · · · ·

 .
We ignore the last row and column because we never differentiate with respect to u (see
Corollary 2.3) and ψ4 only depends on u.
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We claim that this yields the identities stated in the lemma. Let us examine for instance
the first one:

Φ

(
z
∂A
∂z

)
= Φ

(
z
∂ψ1

∂z

)
× ∂J
∂t

+Φ

(
z
∂ψ2

∂z

)
× ∂J
∂ν•

+Φ

(
z
∂ψ3

∂z

)
× ∂J
∂ν◦

,

= t
1 + ν•ν◦
1− ν•ν◦

× ∂J
∂t

+ ν• ×
∂J
∂ν•

+ ν◦ ×
∂J
∂ν◦

,

as stated in the lemma.
The other identities are proved in a similar fashion. □

We can now write a PDE for the Ising generating function. We find convenient to use the
following notation : for any variable a,

∂a =
∂
∂a

and Da = a
∂
∂a
.

Proposition 3.3. The generating function I of Ising cubic maps, defined by (12), satisfies the
following fourth order PDE in the variables t,ν• and ν◦:

ΩI =
s

12
Λ4I +

1
2

(Λ2I)2 + t
(
ν◦ + 2t3

(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
))
Λ2I + t5Q, (19)

where Λ is defined by (17),

Ω :=
1
3

(
Dt +Dν◦ −Dν• − 1

)
◦Λ−

(
tν◦Dt + t(1− ν•ν◦)∂ν•

)2
, (20)

and

Q = 2ν◦
(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)

+
(
ν5
◦ + 2ν2

◦ + ν•
)
s+ 2

(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)2
t3

+ 2
(
16ν8

◦ + 5ν6
◦ν• + 10ν2

•ν
4
◦ + 16ν3

•ν
2
◦ + 59ν5

◦ + 16ν4
• + 54ν•ν

3
◦ + 37ν2

•ν◦ + 32ν2
◦ + 11ν•

)
t3s.

We will see in the next section that this PDE, combined with a degree condition and the
fact that I is symmetric in ν• and ν◦, characterizes I in tQ[ν•,ν◦, s][[t]]. Clearly, the PDE
itself is not symmetric in ν• and ν◦. So far, our efforts to build another PDE that would be
both symmetric and smaller have failed.

Proof. We apply the change of variables Φ , defined by (16), to Equation (11), using the iden-
tities of Lemma 3.2 and the connection (15) between ΦB and I .

The left-hand side of (11) (with p3 = 1) gives

1
3s2/3

(
Dt +Dν◦ −Dν• − 1

)
◦ΛI +

1
s2/3

t2ν2
◦ .

The first term on the right-hand side gives

1
s2/3

(
tν◦Dt + t(1− ν•ν◦)∂ν•

)2
I +

1
2s2/3

t2ν2
◦ .

The second one gives

s1/3

12
Λ4I+

2s1/3t8
(
16ν8

◦ + 5ν•ν
6
◦ + 10ν2

•ν
4
◦ + 16ν3

•ν
2
◦ + 59ν5

◦ + 16ν4
• + 54ν•ν

3
◦ + 37ν2

•ν◦ + 32ν2
◦ + 11ν•

)
.
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The third one gives
1

2s2/3
(Λ2I)2 +

2
s2/3

t4
(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)
Λ2I +

2
s2/3

t8
(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)2
.

The fourth one gives
ν◦
s2/3

tΛ2I +
2
s2/3

t5ν◦
(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)
.

Finally, the fifth and last one gives
1

2s2/3
t2

(
2ν5
◦ st

3 + 4ν2
◦ st

3 + 2ν•st
3 + ν2

◦
)
.

It remains to multiply by s2/3 to obtain the announced PDE. Note that the first term on the
right-hand side of (11) has been moved to the left-hand side, for reasons that we will explain
later. □

4. Uniqueness and effective calculation of the Ising series
4.1. Uniqueness

The first objective of this section is to establish the following result, according to which
the PDE that we have obtained for the series I , combined with two natural conditions, char-
acterizes this series.

Proposition 4.1. The PDE (19) satisfied by the Ising series I of cubic maps, defined by (12),
characterizes I in the ring of series J ≡ J(t,ν•,ν◦, s) of tQ[ν•,ν◦, s][[t]] satisfying the following two
conditions:

• for each n, the total degree in ν• and ν◦ of the coefficient of tn is bounded by n,
• J(t,ν•,0, s) = J(t,0,ν•, s).

More precisely, the PDE determines the coefficient of tn in the series I inductively in n.

Observe that we do not need to require J to be a series in t3. The above two conditions are
obviously satisfied by I , because in the contribution of any Ising cubic map having n edges,
the total degree in ν• and ν◦ is the number of monochromatic edges, hence bounded by n.
The symmetry is obvious as well, and more generally I(t,ν•,ν◦, s) = I(t,ν◦,ν•, s).

Before we embark on the proof, let us examine more closely both sides of our PDE. Let
J =

∑
n≥1 t

nJn be a series satisfying the conditions of the proposition, where Jn is a polynomial
in ν•,ν◦ and s. Then Ω(tnJn) is of the form tn+2Ωn(Jn), where Ωn(Jn) is independent of t.
More precisely, Ωn is the following linear differential operator:

Ωn :=
2
3

(
n+ 1 +Dν◦ −Dν•

)
◦
(
(ν2
◦ + ν•)n+ ν◦(1− ν•ν◦)∂ν• + (1− ν•ν◦)∂ν◦

)
−
(
ν◦(n+ 1) + (1− ν•ν◦)∂ν•

)
◦
(
ν◦n+ (1− ν•ν◦)∂ν•

)
.

Moreover, if we replace I by J in the right-hand side of the PDE (19), and extract the
coefficient of tn+2, then this coefficient only depends of the polynomials Jk up to k = n − 3
(this is why we moved the term corresponding to ∂2B/∂p2

2 from one side of the PDE to the
other). Hence, if we know the polynomials J0 = 0, J1, . . . , Jn−3, we can try to determine Jn by
solving an equation of the form Ωn(Jn) = Pol, for some explicit polynomial Pol in ν•,ν◦ and
s. Since we know that J = I is a solution, it suffices to study the kernel of Ωn.
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Lemma 4.2. For n ≥ 1, the linear operator Ωn, restricted to polynomials P in ν• and ν◦ (with
coefficients in Q[s]) of total degree at most n that satisfy P (ν•,0) = P (0,ν•), has trivial kernel.

Proof. If Ωn(P ) = 0, with
P (ν•,ν◦) =

∑
i+j≤n

pi,jν
i
•ν

j
◦,

then

3Ωn(P ) =
∑
i+j≤n

pi,jν
i
•ν

j
◦
(
2(j −n) (i − j −n)ν• − (i −n) (i + 2j −n+ 3)ν2

◦

−2j (i − j −n)ν−1
◦ + 2i (2i + j − 2n)ν−1

• ν◦ − 3i (i − 1)ν−2
•

)
= 0.

Extracting the coefficient of νi+1
• ν

j
◦ gives a relation between the coefficients of P that we may

try to use to compute them by decreasing induction on i (the right-to-left recursion):

2(n− j) (n− i + j)pi,j = (i + 1−n) (i + 2j −n)pi+1,j−2 + 2(j + 1)(i − j −n)pi+1,j+1

− 2(i + 2)(2i + 3 + j − 2n)pi+2,j−1 + 3(i + 3)(i + 2)pi+3,j . (21)

However, observe that the left-hand side vanishes at the two extreme points (i, j) = (0,n)
and (i, j) = (n,0). Alternatively, we may try to compute pi,j by decreasing induction on j:

extracting the coefficient of νi•ν
j+2
◦ gives the following top-down recursion:

(i −n) (i + 2j −n+ 3)pi,j = 2(j + 2−n) (i − 3− j −n)pi−1,j+2 − 2(j + 3)(i − 3− j −n)pi,j+3

+ 2(i + 1)(2i + 3 + j − 2n)pi+1,j+1 − 3(i + 2)(i + 1)pi+2,j+2. (22)

Of course, we have the boundary condition pi,j = 0 if i < 0 or j < 0 or i + j > n.
We first write the top-down recursion (22) at i = 0, j = n, and obtain p0,n = 0. By the

symmetry assumption, we also have pn,0 = 0. Now for i < n and i+j ≤ n, the coefficient of pi,j
in the right-to-left recursion (21) does not vanish, and allows us to conclude, by decreasing
induction on i, that pi,j = 0 for all i, so that the polynomial P is identically zero. □

Remark 4.3. The procedure used in the above proof also allows to solve the non-homogeneous
equation Ωn(Jn) = Pol where Pol is the polynomial Ωn(In), under the assumption that Jn(ν•,0) =
Jn(0,ν•) and Jn has total degree at most n in ν• and ν◦: we first determine the coefficient of
ν0
•ν

n
◦ using the top-down recursion, then use symmetry to determine the coefficient of νn•ν

0
◦ ,

and then work by decreasing induction on the exponent of ν• using the right-left recursion.

Remark 4.4. If we do not impose the symmetry condition, the kernel of Ωn appears to be
trivial when n is even, but one-dimensional when n is odd. For instance, one readily checks
that

Ω1(ν•) = 0, Ω3(1 + ν3
• ) = 0, Ω5(ν5

• + 2ν2
• + ν◦) = 0.

Proof of Proposition 4.1. Let us consider a series J satisfying the assumptions of the proposi-
tion. For n ≥ 0, let Jn (resp. In) denote the coefficient of tn in J (resp. I). Let us prove by
induction on n that Jn = In. By assumption on J , this holds for n = 0. Assume that it holds
for J0, J1, . . . , Jn−1, with n ≥ 1. Extract from the PDE (19) the coefficient of tn+2. As observed
above Lemma 4.2, this gives ΩnJn = Pol, where Pol only involves ν•,ν◦, s and the polynomi-
als J1, . . . , Jn−3 (and their partial derivatives). Since I also satisfies the PDE, and Ii = Ji for
i < n, we also have ΩnIn = Pol, for the same value of Pol. We conclude that Jn = In thanks to
Lemma 4.2. □



THE ISING MODEL ON CUBIC MAPS: ARBITRARY GENUS (PRELIMINARY VERSION) 15

4.2. Implementation

We have implemented the above recursive calculation of the coefficient In of tn in the
series I both in Maple and in SageMath (see Remark 4.3). The codes are available on our
webpages. We take advantage of the following three properties of I :

• In = 0 unless n is a multiple of 3,
• if we write In =

∑
i,j In,i,jν

i
•ν

j
◦, for In,i,j a polynomial in s, then In,i,j = 0 unless i − j is a

multiple of 3, as observed at the beginning of Section 3,
• In is symmetric in ν• and ν◦.

With Maple, we reach n = 72 edges, with maximal genus 12, in a bit more than a minute.
With SageMath, we get to a more modest n = 54 edges in 2-3 minutes, due to SageMath’s
less efficient handling of multivariate polynomials.

5. Three special cases
The form of the differential operators involved in the PDE satisfied by the Ising series I

allows us to extract at once equations satisfied by three subseries of I : those counting planar
maps, unicellular maps, and monochromatic (white) maps. In the latter case, we recover,
unsurprisingly, the Goulden and Jackson recurrence relation on the number of cubic maps
with 3n edges and genus g.

5.1. The planar case

This is the simplest possible specialization of the three. Let P be the Ising generating
function of cubic planar maps, defined as in (12) but by restricting the sum to planar maps.
It is obtained by setting s = 0 in I .

Corollary 5.1. The Ising generating function P of cubic planar maps satisfies the following second
order PDE in the variables t,ν• and ν◦:

ΩP =
1
2

(Λ2P )2 + t
(
ν◦ + 2t3

(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
))
Λ2P + t5Q0,

where Λ is defined by (17), Ω by (20), and

Q0 = 2ν◦
(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)

+ 2
(
2ν4
◦ + ν•ν

2
◦ + 2ν2

• + 3ν◦
)2
t3.

Proof. This is obtained by setting s = 0 in the PDE (19) satisfied by I . A key property is that
the operators Λ and Ω do not affect the exponent of s. □

Of course this is a complicated result, compared to the fact that the Ising generating func-
tion of rooted cubic maps, namely 6t∂tP , is an explicit algebraic series in t,ν•,ν◦ (see [15, 4,
12]).

Remark 5.2. More generally, extracting from the PDE (19) the coefficient of sg gives a PDE
for the Ising generating function of maps of genus g in terms of the series counting maps of
smaller genus.
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5.2. The unicellular case

The planar case studied just above corresponds to maps having a maximal number of
faces, given their edge number. Here we study the other extreme, with maps having a single
face (also called unicellular), or equivalently maximal genus. Let U be the restriction to
unicellular maps of the series I defined in (12). We furthermore set s to 1, as the edge
number and the genus are then directly related by e(m) = 3(2g(m)− 1).

Corollary 5.3. The Ising generating function U of unicellular cubic maps satisfies the following
fourth order linear PDE in the variables t,ν• and ν◦:

ΩU =
1

12
Λ4U + t5

(
ν5
◦ + 2ν2

◦ + ν•
)
,

where Λ is defined by (17) and Ω by (20).

Proof. The contribution of a coloured map m in the Ising series I is of the form t3nsgνi◦ν
j
•,

and by Euler’s relation, the number of faces of m is then 2 +n−2g. Since there is at least one
face, one always has n ≥ 2g − 1, and equality holds for unicellular maps only.

Let us now examine the effect of the operators Λ and Ω on a monomial tε+3(2g−1)sgνi◦ν
j
•,

with ε ≥ 0, and in particular on the exponents of t and s. We find:

Λ

(
tε+3(2g−1)sgνi◦ν

j
•

)
= t2+ε+3(2g−1)sgλ(ν◦,ν•),

Ω

(
tε+3(2g−1)sgνi◦ν

j
•

)
= t2+ε+3(2g−1)sgω(ν◦,ν•),

for some functions λ and ω that do not involve t nor s. In particular,

sΛ4
(
tε+3(2g−1)sgνi◦ν

j
•

)
= t8+ε+3(2g−1)sg+1λ4(ν◦,ν•) = t2+ε+3(2(g+1)−1)sg+1λ4(ν◦,ν•).

Hence, if we extract from (19) the monomials of the form t2+3(2g−1)sgνi◦ν
j
•, we find that the

terms involving Λ2I do not contribute, that ΩI contributes ΩU , while sΛ4I contributes sΛ4U .
This gives the announced equation on U . □

Remark 5.4. We can also specialize the algorithm of Section 4.2 to compute inductively the
coefficient of t3n in the unicellular series U . In about one minute on a laptop one obtains
for instance the Ising polynomials of unicellular cubic maps with at most 201 edges, which
have genus at most 34.

5.3. The monochromatic white case, and the Goulden-Jackson recursion

We finally consider monochromatic white cubic maps, that is, those in which all edges are
monochromatic white. Let M be the restriction to such maps of the series I defined by (12).
We furthermore set ν◦ = 1 in this series, as this variable becomes redundant. Hence M is a
series in t and s only.

Corollary 5.5. The generating function M of cubic (uncoloured) maps, counted by edges (t) and
genus (s) satisfies

24t7 (tM ′′ + 3M ′)2 + 4s t9M(4) + 72s t8M(3) + t
(
348s t6 + 48t6 + 12t3 − 1

)
M ′′

+ 4
(
105s t6 + 36t6 + 9t3 − 1

)
M ′ + 3t2

(
32s t3 + 8t3 + s+ 4

)
= 0.
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Equivalently, the number r(n,g) of rooted cubic maps with 3n edges and genus g satisfies, for n ≥ 1
and g ≥ 0,

(n+ 1)rn,g = 4n(3n− 2)(3n− 4)rn−2,g−1 + 4
∑

i+j=n−2, h+k=g

(3i + 2)(3j + 2)ri,hrj,k ,

with the initial condition rn,g = δn,0δg,0 − 1
2δn,−1δg,0 for n ≤ 0 or g < 0.

The recursion was first established in [13]. Given the initial condition, the index i ranges
from −1 to n−1 in the summation. The above differential can be rewritten in a more compact
way upon introducing the series R := 2t3M ′ − 1/(2t) + t2:

R = 12t6(R′)2 + 4st9R′′′ + 36st8R′′ + t
(
60st6 − 1

)
R′ .

Proof. The contribution of a coloured map m in the Ising series I is of the form teνi◦ν
j
•sg , with

e ≥ i. Equality means that the map is white monochromatic, and in this case j = 0.
Let us now examine the effect of the operators Λ and Ω on a monomial m := tε+iνi◦ν

j
•sg ,

with ε ≥ 0, and in particular on the exponents of t and ν◦. We will see that these operators
do not decrease the difference between the exponent of t and the exponent of ν◦. Define the
following two operators:

Λ◦ := 2t2ν2
◦ (Dt −D•), Ω◦ :=

1
3

(Dt +D◦ −D• − 1) ◦Λ◦ − (tν◦(Dt −D•))2 ,

and write
Λ = Λ◦ +Λ1, Ω = Ω◦ +Ω1.

Then
Λ◦(m) = Λ◦

(
tε+iνi◦ν

j
•s
g
)

= t2+i+εν2+i
◦ λ(ν•, s),

Ω◦(m) = Ω◦

(
tε+iνi◦ν

j
•s
g
)

= t2+i+εν2+i
◦ ω(ν•, s),

for some functions λ andω that do not involve t nor ν◦. On the other hand, in all monomials
occurring in Λ1(m) and Ω1(m), the exponent of t exceeds the exponent of ν◦ by at least 1+ε.

Hence, if we extract from (19) the monomials where t and ν◦ have the same exponent, we
obtain

Ω◦M◦ =
s

12
Λ4
◦M◦ +

1
2

(
Λ2
◦M◦

)2
+ tν◦(1 + 4t3ν3

◦ )Λ2
◦M◦ + t5ν5

◦ (4 + s) + 8t8ν8
◦ (1 + 4s),

where M◦ is obtained from I by extracting monomials where t and ν◦ have the same power.
Equivalently,M◦ is the seriesM evaluated at tν◦. This series does not involve the variable ν•:
hence, in the above identity, we can replace Λ◦ and Ω◦, respectively, by

2t2ν2
◦Dt and

1
3

(Dt +D◦ − 1) ◦ (2t2ν2
◦Dt)− (tν◦Dt)

2 .

Observe further that the operators Dt and D◦ act in the same way on monomials in which t
and ν◦ have the same exponent. Hence we can replace D◦ by Dt above. Setting finally ν◦ = 1
gives

Ω◦M =
s

12
Λ

4
◦M +

1
2

(Λ
2
◦M)2 + t(1 + 4t3)Λ

2
◦M + t5(4 + s) + 8t8(1 + 4s),

with
Λ◦ := 2t2Dt and Ω◦ :=

1
3

(2Dt − 1) ◦ (2t2Dt)− (tDt)
2. (23)
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This is the fourth order differential equation announced in the corollary. The recursion is
obtained by writing

M =
∑

n≥1,g≥0

rn,g
6n

t3nsg ,

and extracting the coefficient of t3n−1sg in the equation. □

Remark 5.6. Goulden and Jackson also derived the above recursion from the first KP equa-
tion (3). But they obtained it by forbidding, in bipartite maps, black vertices of degree 2
(p2 = 0), while we obtain it, essentially, by forbidding black vertices of degree 3.

Remark 5.7. One can combine specializations. For instance, a DE for the generating func-
tion M0 of planar white cubic maps is obtained by setting s = 0 in the DE of Corollary 5.5:

24t7 (tM ′′0 + 3M ′0)2 + t
(
48t6 + 12t3 − 1

)
M ′′0 + 4

(
36t6 + 9t3 − 1

)
M ′0 + 12t2

(
2t3 + 1

)
= 0.

Its solution, given by

2tM ′0 =
∑
n≥1

2 · 8n

(n+ 1)(n+ 2)

(
3n/2
n

)
t3n,

has been known since the early work of Mullin, Nemeth and Schellenberg [20]. The above
series satisfies a polynomial equation of degree 3.

At the other end of the genus scale, we can derive a linear DE for the generating function
U◦ of unicellular white cubic maps by extracting from Corollary 5.3 the top contribution in
terms of genus, as we did in the proof of Corollary 5.5. One obtains

Ω◦U◦ =
1

12
Λ

4
◦U◦ + t5,

with Ω◦ and Λ◦ given by (23). That is,

4
(
105t6 − 1

)
U ′◦ + t

(
348t6 − 1

)
U ′′◦ + 72t8U (3)

◦ + 4t9U (4)
◦ + 3t2 = 0.

Solving the associated recurrence relation on the coefficients of U◦ gives

U◦ =
∑
g≥1

(6g − 4)!
12gg!(3g − 2)!

t3(2g−1). (24)

This result (or more precisely, a rooted version of it, that is, the series 2tU ′◦) can be found
explicitly for instance in [8, Cor. 8], but is also equivalent to a special case of an older result
due to Walsh and Lehman [26, Eq. 9]. In the next subsection, we return to the general uni-
cellular case, and state a number of results and predictions on the value of other coefficients
of the series U .

6. Inequalities
In this section, we prove Theorem 1.2.
Let us define an order relation between differential operators: given A and B two differ-

ential operators, we say that A ⪰ B if for all nonnegative integers n,a,b with 3n ≥ a + b, for
all reals x,y and all integers k

[tk]
(
(A−B)(t3nνa•ν

b
◦ )
)∣∣∣∣

(ν•,ν◦)=(x,y)
≥ 0.
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Lemma 6.1. For all nonnegative integers n,a,b with 3n ≥ a+b, and for all positive integers k, one
has the following inequalities

Λk ⪰ 2kt2kmin(ν2
◦ ,ν•)

kDk
t ⪰ 0 (25)

Ω ⪯ 4t2

3

(
ν2
◦ + ν• +

ν◦
ν•

+
1
ν◦

)
(Dt + 2) ◦Dt (26)

Proof. The main fact that we use is that for n,a,b with 3n ≥ a+ b, one has

(Dt −D◦ −D•)(t3nνa•νb◦ ) ⪰ 0

We first prove (25) for k = 1, for k > 1 it follows relatively easily by induction. Recall that
by (17):

Λ = 2t2
(
t(ν2
◦ + ν•)

∂
∂t

+ ν◦(1− ν•ν◦)
∂
∂ν•

+ (1− ν•ν◦)
∂
∂ν◦

)
= 2t2

(
ν2
◦ (Dt −D•) + ν•(Dt −D◦)

∂
∂t

+ ν◦
∂
∂ν•

+
∂
∂ν◦

)
⪰ 2t2 min(ν2

◦ ,ν•)(2Dt −D• −D◦) ⪰ 2t2 min(ν2
◦ ,ν•)Dt .

Now, we turn to (26). Since Dt ⪰D◦ and Dt ⪰D•, one gets

Λ ⪯ 2t2
(
ν2
◦ + ν• +

ν◦
ν•

+
1
ν◦

)
Dt .

It is direct that
Dt +Dν◦ −Dν• − 1 ⪯ 2Dt ,

and finally we have

(
tν◦Dt + t(1− ν•ν◦)∂ν•

)2
⪰

(
tν◦(Dt −Dν•)

)2
⪰ 0.

Combining these three inequalities in (20) yields (26).
□

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Note that T = 2DtI (by the correspondence between labelled and rooted
maps), and that all the monomials in both I and T are of the form t3nνa•ν

b
◦ with 3n ≥ a + b

(because 3n counts edges, and a + b counts monochromatic edges). Hence we can apply
Lemma 6.1 and obtain

ΛkI ≥ 2k−1t2kmin(ν2
◦ ,ν•)

kDk−1
t T ≥ 0 (27)

ΩI ≤ 2t2

3

(
ν2
◦ + ν• +

ν◦
ν•

+
1
ν◦

)
(Dt + 2)T (28)

Where the inequalities hold for ν•,ν◦ > 0 coefficientwise in s and t.
We can then plug these inequalities inside (19)and we directly obtain

2
3

(
ν2
◦ + ν• +

ν◦
ν•

+
1
ν◦

)
(Dt + 2)T ≥ t6 min(ν2

◦ ,ν•)
4
( s

12
D3
t T + 2(DtT ))2

)
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Now, Theorem 1.2 follows by extracting the coefficient of t3nsg above, and setting for
instance

C(ν•,ν◦) = 10
min(ν2

◦ ,ν•)
4

ν2
◦ + ν• + ν◦

ν•
+ 1
ν◦

□
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